New Aromatic Compounds from the Fruiting Body of Sparassis crispa (Wulf.) and Their Inhibitory Activities on Proprotein Convertase Subtilisin/Kexin Type 9 mRNA Expression

Sunghee Bang, Hee-Sung Chae, Changyeol Lee, Hyun Gyu Choi, Jiyoung Ryu, Wei Li, Hanna Lee, Gil-Saeng Jeong, Young-Won Chin, and Sang Hee Shim

INTRODUCTION

Sparassis crispa (Wulf.) is an edible/medicinal mushroom belonging to the family of Sparassidaceae and is called “cauliflower mushroom” as a result of its appearance. The mushroom, which mostly grows on the stubs of coniferous trees, is distributed throughout northern temperature zones of the world. The fruiting bodies of S. crispa produce various bioactive substances, including β-glucan, benzoate derivatives, sesquiterpenoids, and maleic acid derivatives. In particular, β-glucan is a major constituent, present in more than 40% of the world. The fruiting bodies of mushroom, which mostly grows on the stubs of coniferous "cauliflower mushroom" as a result of its appearance. The mushroom, which mostly grows on the stubs of coniferous trees, is distributed throughout northern temperature zones of the world.1 The fruiting bodies of S. crispa produce various bioactive substances, including β-glucan,2 benzoate derivatives,3 sesquiterpenoids,4 and maleic acid derivatives.5 In particular, β-glucan is a major constituent, present in more than 40% of S. crispa. They have been demonstrated to show a variety of pharmacological activities, including antitumor,6–8 hematopoietic response-enhancing,9 wound-healing,10 antimetastatic, antihypertensive, and antidiabetic effects.11

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is noted to interfere with the function of low-density lipoprotein receptor (LDLR) on the liver cell surface that transports low-density lipoprotein cholesterol (LDL-C) into the liver for metabolism, leading to high levels of LDL-C. Thus, the PCSK9 inhibitor was proposed to be a new LDL-C-lowering agent. When the PCSK9 inhibitor was used in combination with a statin, known as a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, it has been shown to dramatically lower LDL-C levels by up to 60%. Therefore, the PCSK9 inhibitor has recently emerged as a new strategy to treat hyperlipidemia. To date, two PCSK9 inhibitors (evolocumab and alirocumab) have been approved by the U.S. Food and Drug Administration (FDA) to treat familial hypercholesterolemia, and several PCSK9 inhibitors are currently under clinical trial.12 In addition, several natural compounds, such as berberine and curcumin, have been reported to inhibit PCSK9 mRNA expression. For these reasons, more investigation is required to discover new PCSK9 inhibitors, which could be good supplements to statin treatment as a result of their effects on PCSK9 mRNA.

The extracts of the cauliflower mushroom were reported to exhibit antihypertensive and antidiabetic activities related to hyperlipidemia. To our knowledge, there are no reports on effects of cauliflower mushroom and its constituents on PCSK9 mRNA expression. We therefore examined the effects of the extracts and pure compounds on PCSK9 mRNA expression to see if their hypocholesterolemic effects could be partly explained by additional effects on PCSK9 mRNA expression. We found that some compounds from the cauliflower mushroom extracts inhibit the PCSK9 mRNA expression. We therefore examined the effects of the extracts and pure compounds on PCSK9 mRNA expression to see if their hypocholesterolemic effects could be partly explained by additional effects on PCSK9 mRNA expression. We found that some compounds from the cauliflower mushroom extracts inhibit the PCSK9 mRNA expression. Therefore, we herein report the isolation of compounds, their

ABSTRACT: Successive chromatography of EtOAc-soluble extracts of the fruiting body of Sparassis crispa (Wulf.) resulted in isolation of four new aromatic compounds, sparoside A (1) and sparalides A–C (3–5), two newly occurring compounds, 2 and 6, and eight known compounds, 7–14. The chemical structures were determined by interpretation of nuclear magnetic resonance and mass spectrometry spectroscopic data. Extract, solvent-soluble fractions of the extract, and all of the pure compounds isolated from the fractions were subjected to the mRNA expression assay for proprotein convertase subtilisin/kexin type 9 (PCSK9). Among them, sparoside A (1), hanabiratakide A (8), adenosine (11), and Sα,β-epoxy-(22E,24R)-ergosta-8(14),23-diene-3,7,14-triol (14) exhibited potent inhibitory activities on PCSK9 mRNA expression, with IC_{50} values of 20.07, 7.18, 18.46, and 8.23 μM, respectively (berberine, positive control, IC_{50} = 8.04 μM), suggesting that compounds 1, 8, 11, and 14 are suitable for use in supplements to the statins for hyperlipidemia treatments.

KEYWORDS: Sparassis crispa, proprotein convertase subtilisin/kexin type 9 (PCSK9), phthalide, sparoside A
MATERIALS AND METHODS

General Experimental Procedures. The high-resolution electrospray ionization mass spectrometry (HRESIMS) data were obtained on an ultrahigh-resolution electrospray ionization quadrupole-time-of-flight (UHR ESI Q-TOF) mass spectrometer (Bruker, Billerica, MA). The nuclear magnetic resonance (NMR) spectra were acquired with a 300 Ultra shield spectrometer (1H, 300 MHz; 13C, 75 MHz, Bruker), a NMR system 500 MHz (1H, 500 MHz; 13C, 125 MHz, Varian, Palo Alto, CA), and a DD2 700 spectrometer (1H, 700 MHz; 13C, 175 MHz, Agilent Technologies, Santa Clara, CA) using the solvent signals (δH 2.50/δC: 39.51 for dimethyl sulfoxide (DMSO)-d6; δH 3.31/δC 61.63 for chloroform-d (CHCl3), Cambridge Isotope Laboratories, Inc., Tewksbury, MA) as internal standards; chemical shifts are indicated as δ values. Analytical high-performance liquid chromatography (HPLC) was carried out on a 1260 infinity HPLC system (Agilent Technologies) supplied with a G1315A quaternary pump, a G1329B autosampler, a G1316A oven for temperature control, an G1315D photodiode array (PDA) detector, and a G1311C quaternary pump, a G1329B autosampler, a G1316A oven for temperature control, and a G1315D photodiode array (PDA) detector, and a G1311C quaternary pump, a G1329B autosampler, a G1316A oven for temperature control, and a G1315D detector. Silica gel 60 F254 and RP-18 F254S plates (Merck, Darmstadt, Germany) were used for analysis by thin-layer chromatography (TLC), with detection of ultraviolet (UV) and 10% H2SO4 reagent to visualize the bands. The analytical grade of solvents was used for the whole experiments.

Plant Material. Dried fruiting bodies of S. crispa were provided by Gyeongshin Bio Co. (Euiwang, South Korea) in August 2016. This sample was botanically identified by the corresponding author (Sang Hee Shim). A voucher was deposited at the pharmacognosy laboratory of the College of Pharmacy, Duksong Women’s University (specimen NPC-16-08).

Extraction and Isolation. Dried fruiting bodies of S. crispa (1 kg) were extracted with 100% MeOH (3.0 L) under reflux 3 times to afford 153.0 g of the extracts. The extracts were suspended in distilled water (1.0 L) and partitioned using n-hexane (3 × 1.0 L), CH2Cl2 (3 × 1.0 L), EtOAc (3 × 1.0 L), and n-BuOH (3 × 1.0 L), consecutively, yielding n-hexane (17.6 g), CH2Cl2 (2.7 g), EtOAc (9.8 g), n-BuOH (15.0 g), and H2O (107.9 g) layers, respectively. The EtOAc-soluble layer (9.8 g) was set apart by vacuum liquid chromatography (VLC, 40 × 9 cm) over silica gel using gradient solvents of n-hexane/EtOAc/MeOH (10:1:0, 2.5:1:0, 1.5:1:0, and 1:1:0; each 5 L), CHCl3/MeOH/H2O (10:1:0 and 5:1:0; each 5 L), and 100% MeOH (3 L) to obtain seven fractions (fractions E1—E7). Silica gel column chromatography was employed to fraction E2 with the elution of n-hexane/acetonitrile gradient solvents (20:1 and 15:1; each 0.2 L) to afford compound 2 (8.6 mg). Fraction E4 (1.4 g) was fractionated on silica gel column chromatography (15 × 8 cm) with gradient solvents of CHCl3/acetonitrile (65:1, 20:1, 10:1, and 7:1; each 1 L) and 100% MeOH (1 L) to afford six fractions (fractions E4-1—E4-6). Fraction E4-1 was further purified with reversed-phase HPLC using a H2O/acetonitrile (60:40 → 45:55, v/v) gradient to yield compounds 12 (15 mg), 13 (18.5 mg), and 14 (1.5 mg). Compounds 1 (2.4 mg), 5 (2.9 mg), 6 (1.7 mg), 7 (1.8 mg), 8 (5.6 mg), 9 (7.3 mg), and 10 (4.1 mg) were obtained from fraction E5 using reversed-phase HPLC with a gradient of H2O/MeOH (80:20 → 0:100, v/v). Fraction E6 was subjected to reversed-phase HPLC with gradient solvents of H2O/MeOH (95:5 → 50:50, v/v) to furnish compounds 3 (13.0 mg), 4 (6.5 mg), and 11 (2.9 mg).

Sparalide A (2-Hydroxy-3-methoxy-6-methylbenzoic Acid Meth- yl Ester 4-O-α-D-Riboside), 1: yellowish amorphous solid; (+) HRESIMS m/z, 367.1003 [M + Na]+ (calcd for C16H17NaO9, 367.1000); 1H and 13C NMR, see Table 1; and heteronuclear multiple-bond correlations (HMBCs, CD3OD, H → C, H-5 → C-1, C-3, C-4, and CH2H H-1′ → C-4, C-2′, C-3′, and C-4′; H-2′ → C-1′; H-3′ → C-1′, C-2′, C-4′, and C-5′; H-5′ → C-3′ and C-4′; CH3C-3′ and C-6; OCH3 → C-3; and COOCH3 → COOCH3).

Sparalide B (5-Methoxyphthalide 7-O-α-D-Riboside), 3: white amorphous powder; (+) HRESIMS m/z, 335.0737 [M + Na]+ (calcd for C15H12NaO6, 335.0737); 1H and 13C NMR, see Table 1; and HMBCs (DMSO-d6, H → C), H-3 → C-1, C-3a, C-4, C-5, and C-7a; H-4 → C-3, C-5, C-6, C-7, and C-7a; H-6 → C-1, C-4, C-5, C-7, and C-7a; H-1′ → C-3′, C-4′, and C-5′; H-3′ → C-1′; H-4′ → C-3′; H-5′ → C-3′ and C-4′; and OCH3C-3′ → OCH3C-3′ and C-4′.

Sparalide B (6-Methoxy-4,5,7-trihydroxyphthalide), 4: yellow amorphous solid; (+) HRESIMS m/z, 235.0212 [M + Na]+ (calcd for C14H16NaO8, 235.0213); 1H and 13C NMR, see Table 1; and

<table>
<thead>
<tr>
<th>number</th>
<th>1H δC</th>
<th>1H δH multi (J in Hz)</th>
<th>δC</th>
<th>1H δH multi (J in Hz)</th>
<th>δC</th>
<th>1H δH multi (J in Hz)</th>
<th>δC</th>
<th>1H δH multi (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111.09</td>
<td>168.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>156.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>137.22</td>
<td>68.98 5.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>151.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>154.57</td>
<td>100.49 6.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>112.34</td>
<td>6.66 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>137.40</td>
<td>102.59 6.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>156.23</td>
<td>114.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>107.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1′</td>
<td>102.64</td>
<td>5.73 d (4.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2′</td>
<td>73.82</td>
<td>4.32 dd (4.5, 6.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3′</td>
<td>71.23</td>
<td>4.10 dd (2.8, 6.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4′</td>
<td>88.46</td>
<td>4.16 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5′</td>
<td>63.30</td>
<td>3.70 dd (3.4, 12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCH3</td>
<td>61.63</td>
<td>3.85 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH3</td>
<td>23.28</td>
<td>2.43 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOCH3</td>
<td>172.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOCH3</td>
<td>52.68</td>
<td>3.93 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Measured in CD3OD. †Measured in DMSO-d6.
Acid Hydrolysis of Compounds 1 and 3. Each 1 mg of compounds 1 and 3 was hydrolyzed with 1 N HCl (1 mL) at 80 °C for 2 h to afford aglycone and sugar moieties. The reaction mixtures were extracted with EtOAc to separate a sugar moiety-containing aqueous fraction from the aglycone-containing fraction. The aqueous fraction was analyzed.14 Acid hydrolysis of each compound afforded aglycone and sugar moieties. The sugar moieties (each 0.5 mg) were dissolved in pyridine (100 μL), supplemented with l-cysteine methyl ester hydrochloride (0.5 mg), and placed at 60 °C for 1 h for reaction. A total of 10 μL of dNTPs at 42 °C-7a; and OC

Determination of the Absolute Configuration of Ribose. To determine the absolute configuration of ribose in compounds 1 and 3, derivatives of the sugar moieties were analyzed.14 Acid hydrolysis of each compound afforded aglycone and sugar moieties. The sugar moieties (each 0.5 mg) were dissolved in pyridine (100 μL), supplemented with l-cysteine methyl ester hydrochloride (0.5 mg), and placed at 60 °C for 1 h for reaction. A total of 10 μL of dNTPs at 42 °C-7a; and OC

Statistical Analyses. Data were expressed as the mean ± standard error of the mean (SEM). Analysis of variance (ANOVA) determined the level of statistical significance, and Dunnett’s t test was used for multiple comparison procedures. p values (calculated probability) less than 0.05 were regarded to be significant.

RESULTS AND DISCUSSION

Structural Elucidation. A series of chromatographic methods carried out on the extract of S. crispa led to the isolation of 14 compounds, which include four new aromatic compounds, 1 and 3–5, two new naturally occurring compounds, 2 and 6, and eight known compounds, 7–14 (Figure 1).

The known compounds were identified to be methyl 2,4-dihydroxy-3-methoxy-6-methylbenzoate (2),16 3-hydroxy-7-methoxyphthalide (6),17 5-methoxy-7-hydroxyphthalide (7),18 hanabiratakelide A (8),19 nicotinamide (9),19 3′-deoxy-5′-methylthioadenosine (10),20 adenosine (11),21 ergosterol...
ergosterol peroxide (13), 22 and S6,6α-epoxy-(2E,24R)-ergosta-8(14),22-diene-3β,7β-diol (14) 24 by comparing their NMR and mass spectrometry (MS) data to those in the reference. Of these, although compounds 2 and 6 have been reported as synthetic intermediates, they have been reported for the first time in nature in this study.

Compound 1 was obtained as a yellowish amorphous solid. Positive HRESIMS suggested its molecular formula to be C₁₀H₁₅O₆. The 1H NMR spectrum of compound 1 displayed an aromatic proton at δ_H 6.66 (1H, s, H-S), one sugar unit at δ_C 5.73–3.65, two methoxyl groups at δ_C 3.93 (3H, s, COOCH₃) and 3.85 (3H, s, 3-OCH₃), and a methyl group at δ_C 2.43 (3H, s, 6-CH₃). The 13C NMR spectrum of compound 1 suggested the presence of a carbonyl group (δ_C 172.81), six aromatic carbons (δ_C 156.45, 154.57, 137.40, 137.22, 112.34, and 111.09), one sugar unit (δ_C 102.64, 88.46, 73.82, 71.23, and 63.30), two methoxyl groups (δ_C 61.63 and 52.68), and a methyl group (δ_C 23.28). One sugar unit was confirmed to consist of a ribose by 1H and 13C NMR data, which was further supported by chemical reaction. Acid hydrolysis of compound 1 followed by TLC with authentic ribose supported that the sugar was ribose. Moreover, the 4.4 Hz of coupling constant for the anomic proton at δ_H 5.73 suggested an α configuration. HMBC of the methoxyl protons at δ_H 3.93 with the carbonyl carbon at δ_C 172.81 indicated that methyl carboxylate was attached to the aromatic ring. The positions of the methoxyl, methyl group, and ribose at the aromatic ring were assigned by analysis of the HMBC spectrum. HMBCs of the methoxyl protons at δ_H 3.85 with the aromatic carbon at δ_C 137.22 and the anomic proton at δ_H 5.73 with the aromatic carbon at δ_C 154.57 allowed for the assignment of the carbons bearing the methoxyl group and ribose. HMBC of the methyl protons at δ_H 2.43 with the aromatic methine carbon at δ_C 112.34 and the non-protonated aromatic carbon at δ_C 137.40 and the aromatic methine proton at δ_H 6.66 with the carbons at δ_C 111.09, 137.22, and 154.57 indicated the methyl, methyl carboxylate, methoxyl, and ribose were attached to the C-6, C-1, C-3, and C-4 positions, respectively. Determination of the absolute configuration of ribose was conducted by comparing the retention time of L-cysteine methyl ester and α-tolyliothiocyanate derivative of acid hydrolysate to those for authentic D-/-ribiose derivatives in HPLC-UV. The derivatives of authentic D-ribose and L-ribose eluted at t_R of 12.68 and 8.20 min, respectively, on isocratic HPLC. Because the derivative of compound 1 eluted at t_R of 11.93 min, ribose in compound 1 was confirmed to have D configuration. Thus, the structure of compound 1 was determined to be 2-hydroxy-3-methoxy-6-methyl benzonic acid methyl ester 4-O-α-D-riboside and was named sparalide A.

Compound 3 was obtained as a white amorphous powder. Its positive HRESIMS data suggested the molecular formula to be C₁₀H₁₄O₆. The 1H NMR spectrum displayed two aromatic methine protons at δ_H 6.82 (1H, s, H-4) and 6.81 (1H, s, H-6), an oxymethylene at δ_H 5.28 (2H, H-3), one sugar unit at δ_C 5.95–3.45, and a methoxyl group at δ_C 3.85 (3H, s, 5-OCH₃). The 13C NMR spectrum of compound 3 suggested the presence of a carbonyl group (δ_C 168.89), six aromatic carbons (δ_C 166.11, 156.23, 151.68, 107.05, 102.59, and 100.49), one pentose moiety (δ_H 101.47, 87.99, 79.71, 74.97, 71.74, and 61.48), an oxymethine (δ_C 66.79), and a methoxyl carbon (δ_C 66.79). It was presumed to be a bicyclic compound to meet seven unsaturations obtained from its molecular formula. The presence of an aromatic ring, an oxymethine group, and carboxyl carbon indicated that compound 3 has a phthalide skeleton, which has previously been reported in S. crispa. Pentose was presumed to be ribose based on the carbon chemical shifts and proton resonances. The coupling constant (3.9 Hz) of the anomer proton suggested that ribose was attached to aglycone with an α configuration. The presence of ribose was verified by the direct comparison of acid hydrolysate of compound 3 with commercially available authentic ribose. The HMBCs of the oxymethylene at δ_H 5.28 with carboxyl carbon (δ_C 168.89) and aromatic carbon (δ_C 151.68 and 107.05) supported the idea that compound 3 had a γ-lactonated aromatic compound, known as a phthalide. The singlet aromatic methine protons suggested that the methoxyl group and the ribose moiety were not attached to the adjacent carbon atoms of the aromatic ring. The positions of the methoxyl group, methyl group, and ribose at the aromatic ring were assigned by analysis of the HMBC spectrum. HMBCs of the methoxyl protons at δ_H 3.85 with the aromatic carbon at δ_C 137.22 and the anomic proton at δ_H 5.73 with the aromatic carbon at δ_C 154.57 allowed for the assignment of the carbons bearing the methoxyl group and ribose. HMBC of the methyl protons at δ_H 2.43 with the aromatic methine carbon at δ_C 112.34 and the non-protonated aromatic carbon at δ_C 137.40 and the aromatic methine proton at δ_H 6.66 with the carbons at δ_C 111.09, 137.22, and 154.57 indicated the methyl, methyl carboxylate, methoxyl, and ribose were attached to the C-6, C-1, C-3, and C-4 positions, respectively. Determination of the absolute configuration of ribose was conducted by comparing the retention time of L-cysteine methyl ester and α-tolyliothiocyanate derivative of acid hydrolysate to those for authentic D-/-ribiose derivatives in HPLC-UV. The derivatives of authentic D-ribose and L-ribose eluted at t_R of 12.68 and 8.20 min, respectively, on isocratic HPLC. Because the derivative of compound 1 eluted at t_R of 11.93 min, ribose in compound 1 was confirmed to have D configuration. Thus, the structure of compound 1 was determined to be 2-hydroxy-3-methoxy-6-methyl benzonic acid methyl ester 4-O-α-D-riboside and was named sparalide A.

Compound 4 was obtained as a yellowish amorphous solid, in which its molecular formula was established as C₉H₈O₆ on the basis of positive HRESIMS. In its 1H NMR spectrum, one oxymethylene and one methoxyl signal appeared at δ_H 5.09 (2H, s, H-3) and 3.79 (3H, s, 6-OCH₃), respectively. Six aromatic carbons (δ_C 141.94, 139.30, 139.19, 135.44, 124.99, and 106.25), an oxymethylene carbon (δ_C 66.79), and a carbonyl group (δ_C 168.90) shown in the 13C NMR spectrum suggested that compound 4 had a phthalide skeleton, similar to compound 3. The position of the methoxyl group was assigned to be attached to C-6 on the ground, in which the methoxyl protons (δ_H 3.79) showed HMBCs with C-6 (δ_C 139.31), while the oxymethylene protons (δ_H 5.09) showed HMBCs with C-7 (δ_C 141.94), C-5 (δ_C 139.19), C-4 (δ_C 135.44), C-3a (δ_C 124.99), and C-7a (δ_C 106.25) (Figure 2). 4HMBCs between H-2,3 and C-5 and C-7 in addition to 13HMBCs between H-2,3 and C-4 ascertained that the methoxyl group was attached to C-6 rather than C-4, C-S, or C-7. From these evidence, the structure of compound 4 was determined to be 6-methoxy-4,5,7-trihydroxyphthalide, named sparalide B.

Compound 5 was a colorless amorphous solid, and the molecular formula was confirmed to be C₉H₈O₆ by positive HRESIMS. The 1H NMR spectrum of compound 5 showed an aromatic proton at δ_H 6.68 (1H, s, H-4), an oxymethylene at δ_H 5.15 (2H, s, H-3), and a methoxyl group at δ_H 4.01 (3H, s, 7-OCH₃). Its 13C NMR spectrum exhibited six aromatic carbons (δ_C 155.49, 147.44, 142.32, 139.62, 109.50, and 104.67), an oxymethylene carbon (δ_C 70.46), a carbonyl carbon (δ_C 172.14), and a methoxyl carbon (δ_C 62.65). The 1H and 13C NMR data presented similarities to those for compound 4, except for an additional aromatic proton at δ_H 6.68. Thus, it was assumed that two hydroxyl groups and a methoxyl group were attached to the aromatic ring of the phthalide skeleton,
which was also supported by the observation of HRESIMS. The positions of aromatic methine carbon and methoxylated carbon were assigned to be C-4 and C-7, respectively, supported by HMBCs of H-4 (δC 6.68) with C-3 (δC 70.46), C-5 (δC 155.49), C-6 (δC 139.62), C-3a (δC 142.32), and C-7a (δC 109.50) and the methoxyl proton (δH 4.01) with C-7 (δC 147.44) (Figure 2). Using these data, the structure of compound 5 was established to be 5,6-dihydroxy-7-methoxypthalide, named sparalide C.

**Evaluation of PCSK9 mRNA Expression.** The MeOH extract and polarity-based solvent-soluble layers of *S. crispa* were tested on inhibitory activity of PCSK9 mRNA expression using HepG2 cells. The EtOAc-soluble layer showed the most potent inhibitory activities at 10 μg/mL, which prompted us to elucidate the active compounds from the EtOAc-soluble layer (Figure 3). Bioactivity-guided fractionation led to isolation of 14 compounds, 1–14, from this layer. All of the isolated compounds were assessed for their PCSK9 mRNA expression. The results demonstrated that compounds 1, 8, 11, and 14 were found to potentially inhibit PCSK9 mRNA expression, with IC50 values of 20.07, 7.18, 18.46, and 8.23 μM, respectively, at the concentration of 20 μM, whereas the IC50 of berberine, positive control, was 8.04 μM at the same concentration as the isolated compounds. In comparison to the positive control, compound 8 (hanabiratakelide A) was found to be a stronger PCSK9 inhibitor than berberine, which is known to be one of the most potent PCSK9 inhibitors in nature thus far.

Concerning the structure–activity relationship, the results showed that the 4,5,6-trioxypthalide moiety seems to be important for the PCSK9 inhibitory activity rather than the dioxygenation or tetraoxygenation pattern, as shown in compound 8. In the case of simple benzoic acid derivatives (compounds 1 and 2), the ribose moiety seemed to be important in the activity, as shown for compound 1. The ribose moiety seemed also to play an important role in adenosine derivatives (compounds 10 and 11), where the OH group at C-5 of the ribose moiety seemed to be effective rather than SCH2. In the case of ergosterol derivatives, the OH group and epoxide substituents on the B ring seemed to be more effective than when they had an endoperoxide or a diene system.

The results suggest that hanabiratakelide A (8) and 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7β-diol (14) as well as the extract of *S. crispa* could be good supplements to statins for the treatment of hyperlipidemia. Moreover, further studies regarding the mechanistic and in vivo efficacies for compounds 8 and 14 might be required.

**ASSOCIATED CONTENT**

*Supporting Information*

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jafc.7b02657.

NMR and high-resolution mass spectrometry (HRMS) spectra of compounds 1 and 3–5 (PDF)

**AUTHOR INFORMATION**

Corresponding Author

*Telephone: +82-2-901-8774. Fax: +82-2-901-8386. E-mail: sangheeshim@duksung.ac.kr.*

**ORCID**

Wei Li: 0000-0001-7272-7290
Sang Hee Shim: 0000-0002-0134-0598

**Funding**

This study was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the High Value-Added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA, 116001-3) and also supported by the National Research Foundation (NRF) of Korea (Grants NRF-2015R1D1A1A01057914 and NRF-2016R1A6A1A03007648).

**Notes**

The authors declare no competing financial interest.

**REFERENCES**


